
Adaptive Sizing of Populations and Number of Islands in
Distributed Genetic Algorithms

Johan Berntsson
School of Software Engineering and Data

Communications
Queensland University of Technology

QLD 4001, Australia

j.berntsson@qut.edu.au

Maolin Tang
School of Software Engineering and Data

Communications
Queensland University of Technology

QLD 4001, Australia

m.tang@qut.edu.au

ABSTRACT
Deciding the appropriate population size and number of is-
lands for distributed island-model genetic algorithms is of-
ten critical to the algorithm’s success. This paper outlines a
method that automatically searches for good combinations
of island population sizes and the number of islands. The
method is based on a race between competing parameter
sets, and collaborative seeding of new parameter sets. This
method is applicable to any problem, and makes distributed
genetic algorithms easier to use by reducing the number of
user-set parameters. The experimental results show that
the proposed method robustly and reliably finds population
and islands settings that are comparable to those found with
traditional trial-and-error approaches.

Categories and Subject Descriptors: D.2 Software En-
gineering: Miscellaneous

General Terms: Performance Reliability Algorithms

Keywords: genetic algorithms, internet computing, popu-
lation sizing, adaptation

1. INTRODUCTION
Genetic algorithm (GA) is a general optimization method

which is easy to use and apply to a wide range of problems
[1]. However, the performance of the GA depends on a num-
ber of parameters including representation, crossover and
mutation rates, population size, and selection pressure. For
efficiency reasons it is often advantageous to parallelize and
distribute the GA over several processors, which typically
introduces even more parameters, such as the number of is-
lands, and migration parameters. Determining the proper
parameter set is a non-trivial task which depends on the
nature of the problem and its representation, and the GA
operators. Many practitioners rely on trying various combi-
nations of the parameters. This approach obviously requires
a lot of computation which sometimes is larger than the time
used for solving the problem itself. An alternative approach
is to use adaptive methods that adjust the parameters ac-
cording to observed performance during the run of the GA.

Finding the proper population size for a given GA problem
is of crucial importance for good performance, and this pa-
per outlines an adaptive technique that automatically searches
for good settings of island population sizes and the number

Copyright is held by the author/owner.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

of islands, by the means of competition in distributed ge-
netic algorithms (DGA). While other parameters such as
crossover, mutation rates, and migration policy are impor-
tant, they are also fairly tolerant, while a proper population
sizing is crucial and can to some extent overcome subopti-
mal settings of other parameters. If the population size or
the number of islands is too small the GA will convergence
prematurely, and too large values are inefficient. A manual
approach to population sizing could be to first try with a
small population and number of islands, and then increase
each parameter until no further gain in performance is de-
tected. The proposed method works in a similar manner,
but instead of working in an ad-hoc way, the population
adapter automates the process and hides it from the user.
It is applicable to any problem, and makes DGAs easier
to use by reducing the number of user-set parameters and
aiding in construction of robust GA applications with good
performance.

2. PROPOSED METHOD
The basic idea of the population adapter is to run sev-

eral distributed GAs with competing sets of number of is-
lands/island size settings in parallel. Let n denote the num-
ber of islands, and d denote the island size, which is the
same for all islands. The total population is n ∗ d. At
any given time three DGAs (denoted DGA0, DGA1, and
DGA2) are run in parallel with the following set of para-
meters: < n, d >, < n, d ∗ 2 >, < n ∗ 2, d > This sets up
a competition between the basic DGA0, DGA1 with more
islands, and DGA2 with bigger island population sizes. The
DGAs are allowed to run until one of the DGAs overtake its
competitors, or the termination criterion has been met.

The method has similarities to the parameter-less GA [2],
but with significant modifications: (i) both population size,
and number of islands are adjusted in parallel, (ii) the pop-
ulation adapter is both competitive and collaborative, and
(iii) the population adapter terminates automatically when
no further improvements are found.

2.1 Competitive Evaluation
Evaluation of DGAs can be cut if they are being overtaken

by other DGAs, or converging. Overtaking is detected by
comparing average fitness of a DGA with DGAs with big-
ger total population size, since it is unlikely that the smaller
DGA with lower average fitness will succeed in getting better
optimal results than the bigger DGA. The convergence cri-
terion is problem dependent, and should be set by the user.

1575



Seeding Success Evaluations Island size, number of islands
rate Mean Stddev 80,8 80,16 80,32 160,8 160,16 160,32 320,8

Yes 10/10 407555 93437 - - 1 3 3 2 1
No 10/10 463970 205637 1 2 1 4 2 - -

Table 1: Population adapter with the Royal Road problem

Once convergence or overtaking is detected, the population
adapter takes the following action:

• DGA0 converges
no action.

• DGA1 and DGA2 converged
All DGAs restarted.

• DGA1 overtakes DGA0

d = d∗2, DGA1 → DGA0, DGA1 and DGA2 restarted
(using seeding).

• DGA2 overtakes DGA0

n = n∗2, DGA2 → DGA0, DGA1 and DGA2 restarted
(using seeding).

The intuition behind this algorithm is that three hypoth-
esis are evaluated in parallel, and when a DGA overtakes its
competitors, it is an indication of the need to adjust the pa-
rameter set in the direction suggested by the winning DGA.
DGA1 is testing if more islands are beneficial, and when it
overtakes the other DGAs, the routine increases the number
of islands in the next round of competitions. DGA2, which
is testing the benefit of increasing the population size on
each island, works in the same way.

2.2 Collaborative Restart
The basic case of restarting an DGA is to simply reiniti-

ate the population on each island. This may be inefficient,
since each newly restarted DGA will need time to catch up
with its competitors even if its population sizing parame-
ter set is better. As an alternative the population adapter
can use seeding. With seeding, each island in the newly
restarted DGA reinitiates its population, but also inserts
the best individuals from the other DGAs. For instance, if
DGA1 is restarted, each island in DGA1 is seeded with the
best individual from DGA0 and DGA2. In this way, the
DGAs collaborate to give new DGAs a bias toward promis-
ing regions of the search space, which makes the population
adapter more efficient.

2.3 Termination
The population adapter terminates the DGAs when there

is a relatively slim chance of finding a better set of siz-
ing parameters than the current. The termination criterion
should not reply on problem specific parameters, such as a
known global optima, or a maximum number of generations.
Rather, the population adapter uses the convergence status
of each DGA. Since it is quite common that DGAs converge
in early trials because of the small values of n and d, it is
not possible to terminate as soon as a convergence has been
detected. The population adapter therefore does not termi-
nate until (i) each DGA has converged at least once, and (ii)
no new best solution is found during the detection phase. If
a new best solution is detected, then the best solution so far
is updated and the termination detection process is reset.

In addition to the general termination criterion, problem
specific knowledge can be used.

2.4 Experimental Results
Table 1 summarizes the outcome of ten runs of the pop-

ulation adapter, using Holland’s Royal Road problem. To
provide a reference for the population adapter experiments a
series of experiments with manual settings were conducted,
which suggested that a total population size of 2560 is re-
quired for good performance. The population adapter suc-
cessfully finds the optimal value for all runs, but there are
clear differences in the number of evaluations and the se-
lected parameters, depending on whether seeding is used
or not. Without seeding, most runs lead to comparatively
small population sizes. With seeding, bigger population
sizes are favoured, which is found in the manual experi-
ments to be advantageous. This is reflected in the number
of evaluations, where seeding has a lower average number
of generations needed with a significantly lower standard
deviation, suggesting that seeding leads to more reliable re-
sults. Additional experiments with a hard real-world VLSI
floorplanning problem show similar results.

3. DISCUSSION AND CONCLUSIONS
This paper has presented a population adapter for dis-

tributed genetic algorithms that uses an adaptive approach
to finding a good combination of number islands and is-
land population sizes. The method relies on a race between
DGAs using competing parameter settings, but uses collabo-
rative method to jump-start new competitions and increase
robustness and efficiency. Although the experiments were
carried out of standard GAs, the method can be applied to
more advanced GAs, such as messy GAs or the Bayesian op-
timization algorithm, without any significant modifications.

The population adapter requires about three times the
effort needed to solve the problem when the optimal popu-
lation sizing is known beforehand. This overhead is not un-
reasonable, since a manual approach would certainly require
a fair number of trials as well. The population adapter has
the additional benefit of relieving the user from the tedious
testing process, and performing the tests in a pre-defined,
systematic manner.

4. REFERENCES
[1] D. E. Goldberg. Genetic and evolutionary algorithms

come of age. Communications of the ACM, volume
37(3), pages 113–119, ACM Press, 1994.

[2] G. R. Harik and F. G. Lobo. A parameter-less genetic
algorithm. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, editors, Proceedings of the Genetic and

Evolutionary Computation Conference, volume 1, pages
13–17. Morgan Kaufmann, 1999.

1576


